探秘红细胞“折叠大法” 为体外造血铺路
早前的研究表明,一些表观因子能够调控这一过程。但是没有研究在全基因组层面观察染色质压缩的精细过程。更为重要的是,也没有全基因组范围内的数据用于寻找染色质压缩的高频位点或趋势变化的规律与原理。
染色质发生程序性压缩
论文第一作者、北京大学生命科学学院博士后李栋介绍,在染色体结构上有两种不同类型的染色质——异染色质和常染色质。常染色质是指染色体中较为松散、基因较为密集、转录较为活跃的区域。异染色质则是指染色体中比较致密压缩的区域,这些区域的基因相对较少,但它们在细胞分化过程中发挥重要作用,帮助确定细胞的特异性和功能。
而染色质拓扑相关结构域是染色质内一系列区域的聚集,这些区域在空间上相邻且有着共同的调控机制。染色质拓扑相关结构域可以包含多个基因及其调控元件,并在基因调控中发挥重要作用。研究表明,染色质的空间组织对基因表达的调节有重要影响,而染色质拓扑相关结构域作为一个基因组的结构特征,可以协调并调节其中基因的表达以及相互作用。
“我们的研究发现,异染色质区域和常染色质区域展示出不同的压缩特征。作为压缩过程的主要参与者,异染色质区域形成区室间的相互作用;而在常染色质区域,伴随着全局的染色质压缩,染色质拓扑相关结构域的部分区域发生瓦解,但仍旧有部分区域保持完整,并发挥着基因调控功能。”论文第一作者、北京大学生命科学学院博士研究生吴帆说。
美国威斯康星大学麦迪逊分校细胞与再生生物学系教授、威斯康星血液癌症研究所主任Emery Bresnick说,这一结果令人惊讶——大量(约60%)的染色质拓扑相关结构域在整个染色质压缩过程中被破坏瓦解,但红系基因群所处的特定结构域却保持完整直到细胞分化结束。红系基因群所处的特定结构域中包含了活性染色质标记以及必需的红细胞转录因子GATA1,它们应该是这种选择性的重要决定因素。